首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3893篇
  免费   383篇
  国内免费   158篇
  2023年   39篇
  2022年   37篇
  2021年   67篇
  2020年   116篇
  2019年   158篇
  2018年   156篇
  2017年   144篇
  2016年   142篇
  2015年   117篇
  2014年   165篇
  2013年   414篇
  2012年   144篇
  2011年   168篇
  2010年   144篇
  2009年   147篇
  2008年   153篇
  2007年   183篇
  2006年   179篇
  2005年   158篇
  2004年   108篇
  2003年   116篇
  2002年   127篇
  2001年   120篇
  2000年   90篇
  1999年   84篇
  1998年   87篇
  1997年   97篇
  1996年   61篇
  1995年   66篇
  1994年   70篇
  1993年   55篇
  1992年   64篇
  1991年   61篇
  1990年   58篇
  1989年   41篇
  1988年   41篇
  1987年   27篇
  1986年   18篇
  1985年   16篇
  1984年   41篇
  1983年   18篇
  1982年   22篇
  1981年   10篇
  1980年   25篇
  1979年   22篇
  1978年   12篇
  1977年   11篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
排序方式: 共有4434条查询结果,搜索用时 15 毫秒
21.
Oxygen-derived free radicals and hemolysis during open heart surgery   总被引:2,自引:0,他引:2  
Reperfusion injury occurs during open-heart surgery after prolonged cardioplegic arrest. Cardiopulmonary bypass also is known to cause hemolysis. Since reperfusion of ischemic myocardium is associated with the generation of oxygen free radicals, and since free radicals can attack a protein molecule, it seems reasonable to assume that hemolysis might be the consequence of free radical attack on hemoglobin protein. The results of this study demonstrated that reperfusion following ischemic arrest caused an increase in free hemoglobin and free heme concentrations, simultaneously releasing free iron and generating hydroxyl radicals. In vitro studies using pure hemoglobin indicated that superoxide anion generated by the action of xanthine oxidase on xanthine could release iron from the heme ring and cause deoxygenation of oxyhemoglobin into ferrihemoglobin. This study further demonstrated that before the release of iron from the heme nucleus, oxyhemoglobin underwent deoxygenation to ferrihemoglobin. The released iron can catalyze the Fenton reaction, leading to the formation of cytotoxic hydroxyl radical (OH·). In fact, the formation of OH. in conjunction with hemolysis occurs during cardiac surgery, and when viewed in the light of the in vitro results, it seems likely that oxygen-derived free radicals may cause hemolysis during cardiopulmonary bypass and simultaneously release iron from the heme ring, which can catalyze the formation of OH·.  相似文献   
22.
In our work evaluating the antioxidant properties of a number of cardiovascular drugs, we have emphasized the importance of lipophilicity as a property contributing to antioxidant potency. Thus, the dihydropyridine calcium channel blockers and propranolol, one of the most lipophilic beta-blockers, were found to exhibit the greatest potency in membrane and cellular models. Both beta-blockers and calcium channel blockers are classified as antihypertensive agents. We found that the specific chemical moieties of various drugs may participate in the antioxidant mechanism of action. While reviewing relevant work from the past literature, it became apparent that some of the chemical moieties of antihypertensive and vasodilator drugs may bind transition metals. Thus, this present review focuses on common properties of transition metal-interaction that are shared, to a greater or lesser degree, by a number of vasoactive drugs and chemical agents. Although this observation has been pursued by other investigators in the past, we submit that the potential relevance to the newer pharmacological agents needs to be explored further. In addition, new information regarding the role of transition metals and free radicals involving vascular cells focuses greater importance on transition metal-interaction as a potential mechanism in vasodilation. This review does not intend to be inclusive of all chemical structures capable of binding transition metals; only those that are clinically relevant will be considered in some detail. Potential mechanisms of metal-chelating actions leading to vasodilation are also discussed.  相似文献   
23.
Pentane and ethane are degradation products of unsaturated fatty acids which are released during lipid peroxidation. In order to assess whether multiple sclerosis is associated with lipid peroxidation, we measured pentane and ethane excretion by 16 patients with multiple sclerosis and compared them to healthy control subjects. Patients with acute exacerbation of multiple sclerosis had significantly higher concentrations of pentane (10.5±4.2 nmol/l)(p<0.01) compared to either patients in remission (4.5±1.7 nmol/l) or control subjects (4.9±1.1 nmol/l). The concentrations of ethane were not significantly different among these groups. Of the patients with acute exacerbation who later achieved remission, the pentane excretion also returned to normal (5.6±0.9 nmol/l). One patient who failed to reachieve clinical remission continued to excrete large amounts of pentane. We conclude that oxygen free radical activity is enhanced during exacerbation multiple sclerosis.  相似文献   
24.
以黄嘌岭(X)-黄嘌呤氧化酶(XO)系统产生氧自由基,应用微量生物测定法观察慢性缺氧(5000m,10d)对大鼠氧自由基所致肺内动脉收缩的影响及内皮舒张因子(EDRF)在其中的作用。慢性缺氧大鼠有内皮的肺内动脉环对氧自由基的收缩反应较正常环境中的对照动物明显增强,加入EDRF灭活剂还原型血红蛋白(RHb)后更加显著;而加入超氧化物歧化酶(铜锌SOD)后则减弱,甚至消除。反之,不论加入RHb或SOD对氧自由基所致去内皮肺内动脉环的收缩反应均无明显影响。上述结果表明慢性缺氧引起肺内动脉收缩增强与EDRF有密切关系:慢性缺氧可能使EDRF的作用减弱,肺内动脉对氧自由基的反应性增强。表示EDRF及其与氧自由基的关系在慢性缺氧性肺动脉高压的形成中可能具有十分重要的意义。  相似文献   
25.
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.  相似文献   
26.
27.
本实验主要观察并比较了大鼠冷适应前后直肠温度(RT)、血清游离脂肪酸(SFFA)浓度、肩胛间棕色脂肪组织(IBAT)和肝脏cAMP含量的变化及其对去甲肾上腺素(NE)反应性的改变。结果表明:①冷适应28d大鼠在冷环境中RT稳定,NE刺激后RT上升幅度大于常温对照组(P<0.005);②冷适应1d组SFFA升高,冷适应28d组SFFA接近对照组,且对NE刺激无反应,对照组给NE后SFFA与RT一致性升高;③冷适应28d组IBAT的cAMP升高,而肝脏的cAMP含量三组间无显著性差异。NE刺激后,冷适应28d组IBAT和肝脏cAMP均升高,与RT反应一致,而对照组不变。结果提示,在5±3℃适应28d的大鼠已建立冷适应机制,非寒颤产热(NST)容量增加,在冷适应的不同时期,肝脏和IBAT调节NST的机制不同。  相似文献   
28.
ESR spin trapping technique was used to detect and analyze free radical formation. When 6-hydroxydomine (6-OHDA) was incubated alone or in the presence of a free radical generating system (H2O2 and FeSO4), hydroxyl free radicals were observed in a concentration-dependent manner. Glutathione was found to be the most effective scavenger of the ESR signal when compared with vitamin E or Mannitol. The addition of ethanol resulted in the formation of the pure hydroxyethyl free radicals. The amount of hydroxyethyl free radicals in the system was dependent upon the concentration of ethanol and the formation of hydroxyethyl free radicals correlated well with the extent of lipid peroxidation and the loss of enzymic activity of the membrane-bound (Na+, K+)-ATPase. We suggest that in the biological system ethanol may potentiate the neurotoxicity of 6-OHDA with the formation of hydroxyethyl free radicals, which are longer-lived and far more damaging to membranes that the hydroxyl radicals. These data lead us to further hypothesize that the neuronal degeneration caused by 6-OHDA and other compounds that generate free radicals could be potentiated in the presence of ethanol.  相似文献   
29.
Individual 14C-labelled amino acids are rapidly removed from dilute solution in artificial sea water (0.2 mol 1–1) by suspensions of Meliosira medocris. The rate of disappearance of radioactivity corresponds closely to removal of primary amines as determined by measurement of the rate of decrease of fluorescamine-positive material. Net removal of naturally occurring free amino acids from the sea water habitat from which the alga was isolated is demonstrated using high performance liquid chromatography. Removal of amino acids from natural sources makes a significant contribution to the carbon requirements of the alga as well as supplying significant amounts of amino nitrogen.  相似文献   
30.
Summary Culture conditions modulating cell damage from xanthine plus xanthine oxidase-derived partially reduced oxygen species were studied. Porcine thoracic aorta endothelial cells and porcine lung fibroblasts were maintained in monolayer culture. Cells were prelabeled with51Cr before xanthine plus xanthine oxidase exposure. Endothelial cells showed 30 to 100% more lysis than fibroblasts and thus seemed more sensitive to this oxidant stress. The effect of cell culture age, as indicated by population doubling level (PDL), was examined. Response of low PDL endothelial cells and fibroblasts subjected to oxidant stress was compared with the response of PDL 15 cells. Both low PDL endothelial cells and fibroblasts responded differently to the lytic effect of xanthine oxidase-derived free radicals than did higher PDL cells. Specific activities of the antioxidant enzymes catalase, managanese superoxide dismutase, copper-zinc superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase were measured in both low and high PDL fibroblasts and endothelial cells. Antioxidant enzyme specific activities could only partially explain the differences in response to oxidant stress between fibroblasts and endothelial cells and between low and high PDL cells. Cell culture medium composition modulated the rate of production, and relative proportions of xanthine plus xanthine oxidase-derived partially reduced species of oxygen, i.e. superoxide, hydrogen peroxide, and hydroxyl radical. Serum content of medium was important in modulating free radical generation; superoxide production rates decreased 32%, H2O2 became undetectable, and hydroxyl radical generation decreased 54% in the presence of 10% serum. The medium protein and iron content also modulated free radical generation. The data suggest that cell culture media constituents, cell type, and cell culture age greatly affect in vitro response of cells subjected to oxidant stress. Research supported by American Lung Association Fellowship Training Grant and Research Training Grant, the R. J. Reynolds Corporation, and National Institutes of Health Grants HL29784 and 1 HL 23805.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号